Symplectic Duality of Symmetric Spaces

نویسنده

  • Antonio J. Di Scala
چکیده

Let (M, 0) ⊂ C be a complex n -dimensional Hermitian symmetric space endowed with the hyperbolic form ωB . Denote by (M ∗, ω∗ B ) the compact dual of (M,ωB) , where ω ∗ B is the Fubini–Study form on M∗ . Our first result is Theorem 1.1 where, with the aid of the theory of Jordan triple systems, we construct an explicit diffeomorphism ΨM : M → R = C ⊂ M∗ satisfying Ψ∗ M (ω0) = ωB and Ψ ∗ M (ω∗ B ) = ω0 . Amongst other properties of the map ΨM , we also show that it takes (complete) complex and totally geodesic submanifolds of M through the origin to complex linear subspaces of C . As a byproduct of the proof of Theorem 1.1 we get an interesting characterization of the Bergman form on a Hermitian space in terms of its restriction to classical Hermitian symmetric spaces of noncompact type (see Theorem 5.4 below).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

A note on symmetric duality in vector optimization problems

In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".

متن کامل

A construction of symplectic connections through reduction

We give an elementary construction of symplectic connections through reduction. This provides an elegant description of a class of symmetric spaces and gives examples of symplectic connections with Ricci type curvature, which are not locally symmetric; the existence of such symplectic connections was unknown. Key-words: Marsden-Weinstein reduction, symplectic connections, symmetric spaces MSC 2...

متن کامل

Trigonometry of 'complex Hermitian' Type Homogeneous Symmetric Spaces

This paper contains a thorough study of the trigonometry of the homogeneous symmetric spaces in the Cayley-Klein-Dickson family of spaces of 'complex Hermitian' type and rank-one. The complex Hermitian elliptic CP are the generic members in this family; the remaining spaces are some contractions of the former. The method encapsulates trigonometry for this whole family of spaces into a single ba...

متن کامل

Serre-Taubes duality for pseudoholomorphic curves

According to Taubes, the Gromov invariants of a symplectic four-manifold X with b+ > 1 satisfy the duality Gr(α) = ±Gr(κ−α), where κ is Poincaré dual to the canonical class. Extending joint work with Simon Donaldson, we interpret this result in terms of Serre duality on the fibres of a Lefschetz pencil on X, by proving an analogous symmetry for invariants counting sections of associated bundles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006